Interaction Region Issues at a Linear Collider

Tom Markiewicz
March 1, 2001
Basic Issues

Bunch Structure:

<table>
<thead>
<tr>
<th></th>
<th>TESLA-500</th>
<th>NLC-500H</th>
<th>CLIC-3TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_B</td>
<td>337 ns</td>
<td>2.8 ns/1.4 ns</td>
<td>0.67 ns</td>
</tr>
<tr>
<td>N_B</td>
<td>2820</td>
<td>95/190</td>
<td>154</td>
</tr>
<tr>
<td>f</td>
<td>5 Hz</td>
<td>120 Hz</td>
<td>100 Hz</td>
</tr>
</tbody>
</table>

⇒ Crossing Angle, Detector Effects, Feedback Design, Extraction

Beam-beam effects & Machine Backgrounds

<table>
<thead>
<tr>
<th></th>
<th>TESLA-500</th>
<th>NLC-500H</th>
<th>CLIC-3TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2.0×10^{10}</td>
<td>0.75×10^{10}</td>
<td>0.4×10^{10}</td>
</tr>
<tr>
<td>σ_z</td>
<td>300 µm</td>
<td>110 µm</td>
<td>30 µm</td>
</tr>
</tbody>
</table>

⇒ IP Backgrounds, Pinch, Disruption, Synchrotron Rad, Neutrons

Small spot sizes:

<table>
<thead>
<tr>
<th></th>
<th>TESLA-500</th>
<th>NLC-500H</th>
<th>CLIC-3TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_x</td>
<td>550 nm</td>
<td>245 nm</td>
<td>43 nm</td>
</tr>
<tr>
<td>σ_y</td>
<td>5 nm</td>
<td>2.7 nm</td>
<td>1 nm</td>
</tr>
</tbody>
</table>

⇒ Control position & motion of final quads and/or the beam
Minimum Crossing Angle

Avoid unwanted collisions before bunch gets to the IP

Luminosity Loss vs. Crossing Angle for CLIC, $\tau_B=0.67$ ns

D. Schulte, LCWS 2000

$\theta_C > \sim 4$ mrad for NLC

$\theta_C = 0$ mrad for TESLA
Transverse RF cavities on each side of IP rotate the bunches so they collide head on.

Cavity power req. and relative voltage & phase stability limit maximum crossing angle:

- $2\% \Delta L/L$ when bunch overlap error $\Delta x \sim 0.4 \sigma_x$

Since $\Delta x = (\theta_C/2)\Delta z$, at $\theta_C=20\text{mrad}$ phase error Δz corresponds to $\sim10\mu\text{m}$

$\sim 0.2 \text{ degree of X-Band phase}$
Crossing Angle Considerations
Interaction with Detector’s Solenoid

Beam Steering before IP:

• Transverse component of solenoid changes position and angle of beams at the IP
 • 1.7 μm, 34.4 μrad at 1 TeV, L*=2m, B_s=6 T, θ_C=20mrad
• Dispersion and SR cause spot size blow up
 • 3.1 μm added to vertical spot size
• Handle with clever upstream beam steering gymnastics and by moving QD
 • So NOT a problem (unless SR term α (L*B_sθ_C)^5/2 grows too large)

Beam Steering after IP:

• Energy dependence of angle of extraction line
 • Steering: position (410 μm) & angle (69 μrad) different from B=0 case at 1 TeV
 • Only run with solenoid ON and Realign extraction line when necessary
Non cylindrically symmetric geometry for inner detectors
LCD-L2 (3T) with 4.3m L* Optics
Separate (Easier?) Extraction Line $\theta_c = 20$ mrad
NLC - The Next Linear Collider Project

JLC IR
8 mrad Design

Elevation View

- Iron magnet in a SC Compensating magnet
- 8 mrad crossing angle
- Extract beam through coil pocket
- Vibration suppression through support tube
Vertical extraction with electrostatic separators, septum, and dipoles to dump at z=240m

Beams separated by $c\tau_B/2=50$ m (800 GeV)

Beamstrahlung photons to separate dump at z=240m

Tom Markiewicz
Magnet Technology Choices

Permanent Magnets (NLC)
- Compact, stiff, few external connections, no fringe field to affect extracted beam
- Adjustment more difficult

Superconducting (TESLA)
- Adjustable, big bore
- Massive and not stiff, would require windings to eliminate fringe field affecting extraction line

Iron (JLC)
- Adjustable, familiar
- Massive, shielded from solenoid, extraction in coil pocket seems daring
Basic Issue#2: Backgrounds
Well Studied by ALL GROUPS: Not a Problem

IP Backgrounds:
• Beam-Beam Interaction
 • Disrupted primary beam
 • Extraction Line Losses
 • Beamstrahlung photons
 • e+,e- pairs from beams. $\gamma\gamma$ interactions
 • Hadrons from beams. $\gamma\gamma$ interactions
• Radiative Bhabhas

“Good”, scale with luminosity
1) Transport them away from IP
2) Shield sensitive detectors
3) Detector Timing

Machine Backgrounds:
• Synchrotron Radiation
• Muons Production at collimators
• Direct Beam Loss
 • Beam-Gas
 • Collimator edge scattering
• Neutron back-shine from Dump

“Bad”, get nothing in exchange
1) Don’t make them
2) Keep them from IP if you do

Tom Markiewicz
Beam-Beam Interaction

SR photons from individual particles in one bunch when in the electric field of the opposing bunch

Beams attracted to each other reduce effective spot size and increase luminosity

- \(H_D \approx 1.4-2.1 \)

Pinch makes beamstrahlung photons:

- \(0.9-1.6 \gamma/e^- \) with \(E \approx 3-9\% \) \(E_{beam} \)
- Photons themselves go straight to dump
 - Not a background problem, but angular dist. (1 mrad) limits extraction line length

Particles that lose a photon are off-energy

- Physics problem: luminosity spectrum
- Extraction line problem:
 - NLC 1 TeV design has 77 kW of beam with \(E < 50\% \) \(E_{nom} \), 4kW lost (0.25% loss)

Photons interact with opposing e,γ to produce e+,e- pairs and hadrons

\[
\begin{align*}
\gamma\gamma & \rightarrow e+e^- \text{ (Breit-Wheeler)} \\
\gamma e & \rightarrow ee+e^- \text{ (Bethe-Heitler)} \\
e e & \rightarrow eee+e^- \text{ (Landau-Lifshitz)} \\
\gamma\gamma & \rightarrow \text{hadrons}
\end{align*}
\]
NLC/TESLA Beam-Beam Comparison

\[D_Y = \frac{2r_e N_e \sigma_z}{\gamma \sigma_Y (\sigma_X + \sigma_Y)} \]

\[Y = \frac{5\gamma r_e^2 N_e}{6\sigma_z (\sigma_X + \sigma_Y)} = \gamma \frac{B_{\text{bunch}}}{B_c} \]

<table>
<thead>
<tr>
<th></th>
<th>NLC500H</th>
<th>TESLA500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_Y)</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>(Y)</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>(n_\gamma)</td>
<td>1.17</td>
<td>1.6</td>
</tr>
<tr>
<td>(\delta_b)</td>
<td>4.6%</td>
<td>3.2%</td>
</tr>
<tr>
<td>(H_D)</td>
<td>1.4</td>
<td>2.1</td>
</tr>
<tr>
<td># pairs/bunch</td>
<td>88,000*</td>
<td>130,000</td>
</tr>
<tr>
<td>(\langle E \rangle) _pair e</td>
<td>10.5 GeV*</td>
<td>2.8 GeV</td>
</tr>
</tbody>
</table>

\(N_e, \sigma_x, \sigma_y, \sigma_z \Rightarrow \)

More disruption for TESLA with larger luminosity enhancement (but more sensitivity to jitter) and more, but lower energy photons per bunch (but fewer bunches to integrate over)

Real results come from beam-beam sim. (Guinea-Pig/CAIN) and GEANT3/FLUKA

* 1 TeV
Energy Distributions

NLC - The Next Linear Collider Project

NLC-1 TeV

Energy Distribution

Tesla 500 GeV

Markiewicz
Measuring the Luminosity Spectrum

Analyze the acolinearity distribution of Bhabha scattering in the forward tracking region

Klaus Mönig, DESY, LC-PHSM-2000-60-TESLA

\[
\frac{\sqrt{s'}}{\sqrt{s}} = \sqrt{1 - 2 \frac{\sin(\theta_1 + \theta_2)}{\sin(\theta_1 + \theta_2) - \sin \theta_1 - \sin \theta_2}} \approx 1 - \frac{1}{2} \frac{\Delta \theta}{\sin \theta}
\]

- Polar angle resolution \(\sim 10^{-4} \) to measure beam energy spread
- Beamstrahlung distribution parameterized

\[
f(x) = a_0 \delta (1 - x) + a_1 x^{a_2} (1 - x)^{a_3}
\]

and \(a_i \) fit to 1% with 3 fb\(^{-1} \) data with \(\theta > 7^\circ \)

\[
\Delta \left(\frac{\sqrt{s'}}{\sqrt{s}} \right) = 10^{-4} \quad \text{and} \quad \Delta(\text{BS})/\text{BS} = .5\%
\]
Problem: Handling the large low E tail on the disrupted beam cleanly enough to allow extraction line diagnostics

Working plan: Ignore for now - not a problem @ 500 GeV; @ 1 TeV either measure Pol, E upstream, steal undisrupted pulses for diagnostics, calibrate other
No TESLA plans for post IP diagnostics

NLC plans pre-IP diagnostics but no work yet begun
NLC - The Next Linear Collider Project

e+,e- pairs from beams. \(\gamma\gamma\) interactions
At NLC-1000: 44K per bunch @ \(\langle E\rangle=10.5\) GeV (0.85 W)
NLC - The Next Linear Collider Project

Controlling e+,e- Pair Background

Direct Hits

• Increase detector solenoid field to wrap up pairs (3 Tesla adequate, 4 T better)
• Increase minimum beam pipe radius at VXD and stay out of pair “dead cone”

Secondaries (e+,e-, γ,n)

• Remove point of first contact as far from IP/VXD as possible
 • Increase L* if possible
 • Largest exit aperture possible to accept off-energy particles
 • Keep extraneous instrumentation out of pair region

• Masks
 • Instrumented conical “dead cone” protruding at least ~60cm from face of luminosity monitor and 8-10cm thick to protect against backscattered photons
 • Low Z (Graphite, Be) 10-50cm wide disks covering area where pairs hit the low angle W/Si Pair Luminosity monitor
Pair Stay-Clear from Guinea-Pig Generator and Geant
NLC - The Next Linear Collider Project

e, γ, n secondaries made when pairs hit high Z surface of LUM or Q1

Pair distribution at z=200

High momentum pairs mostly in exit beampipe

Low momentum pairs trapped by detector solenoid field
TESLA IR
NLC/JLC/CLIC Similar

Vertex detector

Graphite

Tungsten shield

Quadrupole

LAT

LCAL
VXD/TPC Backgrounds from Pairs

LCD VXD Hit Density/Train & \#\gamma/Train in TPC vs. Radius

TESLA VXD Hits/BX vs. Radius

TESLA \#\gamma/BX in TPC vs. z

- 500 GeV
- 800 GeV
Pairs as a Fast Luminosity Monitor

Also, Pair angular distribution carries information of beam transverse aspect ratio (Tauchi/KEK)
e^+e^- → e^+e^- γγ → e^+e^- Hadrons

Studied by TESLA using Guinea Pig and HERWIG

<table>
<thead>
<tr>
<th>Type</th>
<th>Events/BX</th>
<th>Multiplicity/Event</th>
<th>Chg. Mult./Event</th>
<th>Etot/BX</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.02</td>
<td>34.4</td>
<td>17.4</td>
<td>2.1 GeV</td>
</tr>
</tbody>
</table>

Leads to

VXD Hit densities ~ 10^{-5} hits/mm^2

119 TPC tracks (in 160 BX), probably resolved via TPC time resolution

NLC: No new work done since ~1991 (Help please!)

Need to integrate 190 bunches

Event rate/BX probably scales like n^2_{γ} (50%)

One detector element with good time resolution will help
Neutron Backgrounds

The closer to the IP a particle is lost, the worse

- e+/e- pairs and radiative Bhabhas hitting the Pair Lum-Mon, beam-pipe and magnets in the extraction line.
- Disrupted beam lost in the extraction line.
 - 0.25 % beam loss in recent redesign
- Disrupted beam and beamstrahlung photons in the dump

Neutron hit density in VXD

<table>
<thead>
<tr>
<th></th>
<th>NLC-500 GeV</th>
<th>Tesla-500 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam-Beam pairs</td>
<td>3.2×10^8 hits/cm²/yr</td>
<td>O(10^9 hits/cm²/yr)</td>
</tr>
<tr>
<td>Radiative Bhabhas</td>
<td>3.1×10^6 hits/cm²/yr</td>
<td>< 0.5 $\times 10^8$ hits/cm²/yr</td>
</tr>
<tr>
<td>Beam loss in extraction line</td>
<td>0.1×10^8 hits/cm²/year</td>
<td></td>
</tr>
<tr>
<td>Backshine from dump</td>
<td>2.5×10^8 hits/cm²/yr</td>
<td>negligible</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5.8×10^8 hits/cm²/yr</td>
<td></td>
</tr>
</tbody>
</table>

Figure of merit is 3×10^9 for CCD VXD
Neutrons from Lost Pairs and Rad. Bhabhas

Neutron Background

Sources of VXD Neutrons

Neutrons which reach the IP are produced close to the IP, mainly in the luminosity monitor.
NLC - The Next Linear Collider Project

Neutrons from the Beam Dump

500 GeV e^-

14' x 8 m long Water

Neutron Back-shine from Dump

150 m

15 cm

1 mrad

1.5 x 10^7/year

Tom Markiewicz
Synchrotron Radiation

At SLD/SLC SR WAS a PROBLEM

• SR from triplet WOULD have directly hit beam-pipe and VXD

• Conical masks were installed to shadow the beam pipe inner radius and geometry set so that photons needed a minimum of TWO bounces to hit a detector

• Quantitative measurements of background rates could be fit by a “flat halo” model where it was assumed that between 0.1% and 1% (in the early days) of the beam filled the phase space allowed by the collimator setting.

At NLC/TESLA

• Allow NO direct SR hits ANYWHERE near IP

• SR due to BEAM HALO in the final doublet, not the core of the beam

 • Collimate halo before the linac AND after the linac

 • Halo estimates are $\sim 10^{-6}$ of beam; designing system to handle 10^{-3}

 • Optical solutions to handle halo under development

Tom Markiewicz
HALO Synchrotron Radiation Fans with Nominal 240 μrad x 1000 μrad Collimation

X vs S for 8.57 σ * 28.00 μrad

Y vs S for 25.00 σ * 40.00 μrad

(Similar plots for TESLA)
Muon Backgrounds
WITHOUT Big Bend and with New Short FF

If Halo = 10^{-6}, no need to do anything
If Halo = 10^{-3} and experiment requires <1 muon per 10^{12} e- add magnetized tunnel filling shielding
Reality probably in between

Magnetized steel spoilers
Bunch Train $= 10^{12}$

Engineer for 10^{-3} Halo

Calculated Halo is 10^{-6}

Efficiency of Collimator System is 10^5

No Magnetic Spoilers

+ 9m (18m) Full Tunnel Spoilers at $z = -911m, (-311m)$

(beam lost)/(muon reaching muon endcap)
Basic Issue #3
Colliding Small Beam Spots at the IP

Control position & motion of final quads and/or position of the beam to achieve/maintain collisions

- Get a seismically quiet site
- Don’t screw it up: Pumps, compressors, fluids
- Good magnet and detector engineering: Light, stiff Q1 in a rigid detector
- Tie to “bedrock”: get lenses outside detector as soon as possible
Luminosity Loss vs. Position & Angle Jitter

TESLA
Larger D_y leads to sensitivity $\sim 0.1 \sigma \sim 0.5$nm
Performance of ALL LCs based on feedback systems such as that developed at SLC

“SLOW” feedback based on machine rep rate f and can handle motion of frequencies up to $\sim f/20$ to $f/60$

- 0.1-1 Hz at TESLA where $f = 5$ Hz
- 2-5 Hz at NLC where $f = 120$ Hz

TESLA’s long (2820) train of widely (337ns) spaced bunches allows the extension of the technique to frequencies up to ~ 100 kHz and should handle all correlated noise sources with minimal luminosity loss and little impact to the detector

NLC relies on a variety of techniques to stabilize the collisions against jitter above the 2-5 Hz range
In 90 bunches and $\Delta L < 10\%$, bunches are controlled to $0.1\sigma_y$

Intra-train Feedback at TESLA

(a) Separation Response
(b) Angle Response
Sensor Driven Active Vibration Suppression at NLC

Inertial Capacitive Sensors

Interferometric Sensors: Optical anchor

Carbon fiber stiffener
Piezo mover

FFTBB style cam movers
Cantilevered support tube
Optical Anchor R&D

Measured Displacement over 100 seconds

$rms = 0.2\text{nm}$
Very Fast IP Feedback

Extend Intra-bunch feedback to 270ns long trains at NLC

- Simulation, Optimization, Layout
- Development of BPM sensors and low current correctors
- ASSET-like beam tests

Gain & Offset adjust @ 120 Hz

Measure deflection relative to un-deflected beam
Assumptions
Initial offset = 12 σ_y
Latency = 20 ns

Theoretical Performance
Relative Luminosity
Feedback OFF = 4%
Feedback ON = 73%
• Design exploits large bunch spacing to allow axially symmetric geometry at expense of a possibly more complicated injection/extraction scheme.

• The fact that the detector typically integrates fewer bunch crossings permits larger bunch charges, given similar bunch transverse dimensions, to produce more pinch (and luminosity enhancement) at expense of more backgrounds per bunch and sensitivity to position and angle jitter, neither of which seem to be problems.

• The long trains allow for an extension of the SLC-like beam-beam feedback system to maintain collisions at 0.1σ level without significant luminosity loss and minimal impact on the detector.
NLC/JLC IR Summary

• Bunch spacing requires a 4-40 mrad crossing angle which does not have any apparent problem, permits space for a separate extraction line, is applicable to the $\gamma\gamma$ situation, and can accommodate still smaller bunch spacing if higher frequency machines (CLIC) are the path to the future.

• While the detector typically integrates a full 95/190 bunch train of backgrounds, these appear to be at a low enough level to not impact physics. Inclusion of a device with good timing resolution would further reduce the integrated backgrounds.

• The (reduced) sensitivity to jitter at the IP is handled by a combination of mechanical design, optical, inertial, and fast intra-train feedback.
Linear Collider IR design issues are common to all proposed machines.

The proposed designs look more similar than different

All projects have been actively collaborating to resolve issues through meetings (BDIR-2000, Daresbury U.K.; GM-2000, SLAC) constant communication, & personnel exchange

IR Design is well advanced and not a reason to delay consideration of a linear collider

Let’s choose a machine technology
And get on with it!

Tom Markiewicz